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Abstract We examine the thermal conductivity and bulk viscosity of a one-dimensional
(1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site poten-
tials. This system is equivalent to the FPU-af system in a subset of its parameter space.
We identify three distinct frequency regimes which we call the hydrodynamic regime, the
perturbative regime and the collisionless regime. In the lowest frequency regime (the hy-
drodynamic regime) heat is transported ballistically by long wavelength sound modes. The
model that we use to describe this behaviour predicts that as @ — 0 the frequency depen-
dent bulk viscosity, Z(w), and the frequency dependent thermal conductivity, k (w), should
diverge with the same power law dependence on w. Thus, we can define the bulk Prandtl
number, Pr, = kBgC(a)) /(mk (w)), where m is the particle mass and kp is Boltzmann’s con-
stant. This dimensionless ratio should approach a constant value as @ — 0. We use mode-
coupling theory to predict the @ — 0 limit of Pr,. Values of Pr, obtained from simula-
tions are in agreement with these predictions over a wide range of system parameters. In
the middle frequency regime, which we call the perturbative regime, heat is transported by
sound modes which are damped by four-phonon processes. This regime is characterized
by an intermediate-frequency plateau in the value of k (w). We find that the value of & ()
in this plateau region is proportional to 72 where T is the temperature; this is in agree-
ment with the expected result of a four-phonon Boltzmann-Peierls equation calculation. The
Boltzmann-Peierls approach fails, however, to give a nonvanishing bulk viscosity for all
FPU-«p chains. We call the highest frequency regime the collisionless regime since at these
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frequencies the observing times are much shorter than the characteristic relaxation times of
phonons.

Keywords Transport coefficients - 1D systems - Classical lattices

1 Introduction

The thermal transport properties of one-dimensional (1D) chains of particles have been
recognized as an enigmatic puzzle for several decades [15, 22]. The problem is of more
than academic interest because of the speculation that 1D systems may have applications
for “thermal management” in nanoelectronics [39] and it has been suggested that the un-
usual properties of 1D systems might make a “thermal transistor” possible [7]. By compar-
ison, momentum transport in 1D chains has hardly been studied. However, recently there
has been work [9, 20, 26] suggesting that thermal transport in 1D systems can be best un-
derstood by considering its coupling to momentum transport. In [20] a theory is developed
which allows the low frequency part of the heat current power spectrum to be predicted
from the higher frequency parts of the heat current and momentum current power spectra.
The theory is shown to provide a good prediction for the special case of a system with the
ratio of specific heats y = cp/cy = 1. In such a system the heat current power spectrum
can be predicted from the momentum current power spectrum alone. One of the purposes
of the present paper is to demonstrate that the theory developed in [20] also provides good
predictions for the more general case of y # 1.

Fourier’s law of heat conduction is J, = —« VT (r, t) where J, is the macroscopic heat
flux density, 7T (r, t) is the local temperature and « is the thermal conductivity. Newton’s law
of bulk viscous dissipation is J, = —¢(V - v(r, 1))fi, where J, is the macroscopic normal
momentum current density (or stress) across a surface with normal direction f, ¢ is the bulk
viscosity and v(r, ) is the local macroscopic velocity field. We ignore shear viscosity since
it is irrelevant for 1D systems. The sense in which most 1D systems do not obey Fourier’s
law is that « fails to converge to a finite macroscopic value [22]. Rather, « is seen to go
as N7, where N is the number of particles in the chain and p is some positive power. The
value of p is a matter of great interest, with different values being reported for different
systems [17, 22, 36]. Some attempts have been made [9, 20, 25, 26] to theoretically predict
the value of p. While there are arguments in favour of universal behaviour [20, 22, 26], the
existence of universal behaviour is not supported by the bulk of simulation results that have
been reported so far. The consensus understanding of thermal conductivity in 1D systems
seems to be that a failure of conservation of momentum is necessary for a 1D system to have
a finite thermal conductivity [22, 26]. However, this has not been proved so that one must
entertain the possibility that there exists a momentum conserving mechanism that leads to a
finite thermal conductivity (the proof that momentum conservation implies anomalous heat
transport in [33] contains flaws that are pointed out in [26] and elsewhere). There also seems
to be some consensus that k¥ &~ N'/3 may be a universal behaviour at least for some class of
systems [9, 25, 26]. A different behaviour, perhaps universal for the same class of systems,
was proposed in [20] and we will present evidence of this behaviour in the present paper.

Momentum transport in 1D systems is even more poorly understood, partly because
it has rarely been discussed in the literature. It has been predicted using mode coupling
[12, 13] that the momentum current correlation function has a long time tail that goes
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Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 3

as t~1/2 in 1D.! This is equivalent to a momentum current power spectrum going as @~ '/?

for small w or a bulk viscosity that goes as N'/2. Given that the same calculations predict
a t~1/2 time tail for the heat current correlation function, which is not supported by any
simulation results, this prediction should be viewed with scepticism.

The failure of the mode-coupling calculation in 1D is not unexpected. A key assumption
in [13, 14] is that there is a clear distinction between fast and slow relaxation processes
and that for properties on long time-scales the effects of the fast processes can be incorpo-
rated into phenomenological hydrodynamic parameters. This is roughly correct in 3D where
phase space is dominated by large momenta and the multiplicity of the large momentum fast
processes dominate. In 1D the low momentum parts of phase space are much more signif-
icant and there are important relaxation processes on all time scales. A separation into fast
and slow is still qualitatively correct and perhaps even semi-quantitatively correct provided
one generalizes the hydrodynamic parameters from fixed constants to time-scale dependent
ones.

This picture was tested in [20] for the limiting situation in which mode-coupling the-
ory predicted that, because of a vanishing thermodynamic amplitude, there are no slow
momentum current relaxation processes. Here we test this picture under more general cir-
cumstances. If energy and momentum current correlations are dominated by the same fast
relaxation processes then mode-coupling predicts that these two correlation functions are
related by calculable thermodynamic quantities. This is a refutable proposition.

We present simulation results for the FPU-o model in which the interaction has been
tuned from nearly harmonic through highly anharmonic and asymmetric to ultimately the
highly anharmonic but symmetric pure quartic model studied in [20]. The thermodynamic
amplitudes predicted by mode-coupling theory that we test show a very non-trivial and non-
monotonic variation and our simulations track this variation exceptionally well in the highly
anharmonic and asymmetric regime and are not inconsistent at the two extremes. As the
harmonic limit is approached the comparison with simulation becomes difficult because
all relaxation processes slow down. At the other extreme, as the pure quartic model is ap-
proached the slow relaxation part of the momentum current correlations becomes too small
to observe.

Because our simulation results confirm the predictions of mode-coupling in the limited
sense described above, they also lend credence to the “mode cascade” toy model we pro-
posed in [20]. However, it is also clear that a complete validation of the toy model by sim-
ulation will be very difficult because of the enormous range of time scales that will have to
be tracked.

The outline for the rest of the paper is as follows. In the remainder of this introduction we
provide some general background necessary for understanding the details of our simulations
and comparisons with theory. This is followed in Sect. 2 by some specific mode-coupling
background. Sections 3 and 4 are a description of our model and the thermodynamic calcula-
tions we have had to perform. Section 5 gives the numerical results of our simulations and is
followed by a concluding Sect. 6 which is a more extensive discussion than is given above.
Appendix A gives details on the symplectic algorithm that we are using in our molecular
dynamics simulations. Appendices B and C discuss issues not directly related to mode-
coupling but for which our simulations have provided insight. We emphasize throughout the
paper that it is important to distinguish different frequency regimes by the processes that are

1However, as was seen in [20], unlike the case for the energy current correlation function, the amplitude of
the #~ /2 tail in the momentum current correlation function can vanish in some systems.
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4 G.R. Lee-Dadswell et al.

important, but in practice this is not always easy to do as there is, as yet, little guidance from
theory. Appendix B is a comparison of Boltzmann-Peierls phonon scattering predictions for
a weak coupling regime of the FPU-8 model. The theoretical calculations are limited to the
relaxation-time approximation so that, while the agreement with simulation is not perfect, it
does suggest that Boltzmann-Peierls can be a valid description in a well defined parameter
range for the thermal conductivity; however, as discussed in Appendix B, the Boltzmann-
Peierls approach gives a vanishing result for the bulk viscosity. Appendix C discusses the
even simpler situation of no phonon scattering and is verified, for the momentum current
correlations, to be reliable for the uppermost frequency range of the FPU-8 model.

The thermal conductivity, «, and the bulk viscosity, ¢, are formally related to the gen-
eralized or wave-vector and frequency dependent transport coefficients « (k, w) and ¢ (k, w)
by [16]

K:(})l_r)r})/c(w)zclulirz)llgr(l)x(k,w), (la)
§=i1g})§(w)=ﬂl)gr%”}grg)§(k,w). (1b)

Here and in the following we use the notation
lim A(k) = A. 2
fmA® ©
The frequency dependent & (w) and ;C (w) can be written as Green-Kubo relations in terms

of the corresponding equilibrium heat current cgrrelation function (HCCF), é‘K (1), and mo-
mentum current correlation function (MCCF), C, (¢), namely

ﬂsz t A
f@ = Jim f dr' e &1, (3a)
—00 —_t
{@) = lim / dr'e ™ ¢, (1, (3b)

where kp is Boltzmann’s constant and 8 = 1/kpT is the inverse equilibrium temperature.
In terms of the corresponding currents j, (¢), where u =« or {, we have

N 1 - N
Culty= Jim —(87,(187,(0)). 4)

where L is the system length, (---) denotes a canonical average and Sfﬂ(t) isthe k > 0
limit of the deviation of f,L (#) from its equilibrium value. A further remark on the definition
of f,t(t) is warranted. Following (2), fu (¢) is the zero k limit of the current density j, (k, ).
Under this definition the heat current density, Je(0), is equivalent to what is often referred
to as the “total heat flux”, J, () = Z,N: 1 Jie(gi, 1) (g; is the position of the ith particle), in
studies where Green-Kubo relations are used to calculate thermal conductivities [22].

The HCCF, C,, in the Green-Kubo relation above can freely be exchanged with the en-
ergy current correlation function, ECCEF, C [16] defined analogously to C but with the heat
flux density, j., replaced with the energy flux density, j.. Numerically, it is more convenient
to calculate the ECCF and this is what we do in the simulations reported in this paper. In
practice, we work with the Fourier transformed versions or power spectra of the correlation
functions,

Cplw) = f " dtexplionCo(r). )

o0
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Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 5

We refer to these as the momentum current power spectrum (MCPS) and the energy current
power spectrum (ECPS).

As shown below, in our system the particle spacing is arbitrary. This, as well as com-
putational convenience, makes it useful to work in a particle counting scheme (Lagrange
picture) rather than a spatial coordinates scheme (Euler picture). In the Euler picture (spa-
tial coordinate scheme) hydrodynamic densities and currents are expressed as integrals over
coordinates containing delta functions of the form §(r — q;) where r is the spatial coordi-
nate being integrated over and q; is the coordinate of the particle labeled i. In contrast, the
Lagrange picture allows these quantities to be expressed simply as sums over all particles.
In the Lagrange picture our spatial Fourier transform over a 1D chain is defined as

N
1 Ll
Sjulk, )y = —=) 8ju *()e'™, ()
I \/N ; J}l
where k = {—(N —2)n/N,...,—2n/N,0,2n/N, ..., 7} and (Sj;’l/z is the deviation from

mean current between particles s and s — 1. The prefactor of N~'/2 is to keep our cur-

rent independent of system size as an aid to comparison between runs. With this defini-
tion, (8 f“ (1o fﬂ (0)) is not proportional to N and we should revise (4) by the replacement
1/L — N/L =1/¢, where ¢ is the system length per particle. However, because ¢ is arbi-
trary, as will be shown below, it is preferable to also define particle based currents (i.e. to
work in the Lagrange picture instead of the Euler picture). Thus, we use throughout

Cu(t) = lim (8),(1)8],(0)). ™
instead of (4).
s—1/2

To see how to write a current j;
tonian of the chain

we examine the energy current. Consider the Hamil-

-$g-1pe)

where ¢; ; is the potential energy due to the interaction between particles i and j. We are cur-
rently only interested in the case of nearest neighbour interactions so the sum over potential
energies becomes ZlNzl ¢ ;1. Let us divide this up between particles so that £ = ZIN:I E;
where E; is the energy of the ith particle. We can choose to divide the energy up in several
ways, leading to several different definitions of E;. We choose

2
i

1
i=5-15 [@ri-1 + bitri].- ©

We insist that ¢; ;_; depends only on the difference, g = ¢; — ¢;_1, between the positions g¢;,
gi—1 so that 0¢; ;1 /9q; = —d¢; ;—1/0q;—. Taking the time derivative of E; we obtain

d pidpi 1. . | , ) .,

—Ei=——+ -G —qi-1)¢;;_ i1 — 4],

P 5 (@i = Gi-D)};_1 + Giv1 — G111
where ¢/ ;(q) = 3¢: ;/3q and ¢; = dg; /dt = v;. From Hamilton’s equations, p; = —¢;,_, +
&, 1> so that we get

Ei == [(ip1 + 041 — i +vim)e), ] (10)

N =
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6 G.R. Lee-Dadswell et al.

Taking the convention that a flow to the right (positive direction) is positive we can rewrite
(10) as

E;=—jit2 4 jimt, 1D
where ji~1/2 is the energy flow (to the right) from particle i — 1 to particle i and ji /2 is
the energy flow from particle i to particle i + 1. Comparing this with (10) we can identify

i + V4D Tig1,is (12)

| =

. 1 A
jiH = _E(Ui F Vi) =

where 7;41; is the local stress (in 1D simply equal to the force of one particle on the other)
between particles i + 1 and i. A form of the energy current which often appears in the
literature (e.g. [33]) is

i 1 / /
Je= 3 (1 + 0] v 13)

This definition comes about if one divides up the energy between bonds instead of dividing
it up between particles (i.e. (9) is replaced by E; = (pi2 + pi2+l)/4m + ¢it1.)- It is easy to
verify that this leads to the same definition of the total energy current and so it is equiva-
lent. A similar derivation to the one for (12) leads to a Lagrange picture expression for the
momentum current,

L4172 ’
J;+ = ~Pir1i = Tt (14)

Both (12) and (14) are defined in terms of divergences. Hence, they are arbitrary up to
an additive constant which, if chosen to give zero mean current, makes j, and §j, identical.
For the momentum current a logical choice for this additive constant is the pressure.

2 The Bulk Prandtl Number

It has been known since pioneering studies in the 1960s and 1970s [2, 3] that the current
correlation functions (4) generally have long-time tails that decay as some power of time.
Mode-coupling theory was developed to explain this phenomenon. It invokes a physical
picture in which each transport mode in the system is coupled to every other transport mode.
There are many different formalisms of mode coupling theory using many different sets of
assumptions. A good summary of the most widely used formalisms can be found in [32].
One of the most rigorous mode coupling theories is that of Ernst, et al. [12—14]. In this
theory the main starting assumptions are that the system of interest is in local equibrium and
that local equilibrium is established and maintained by processes which are fast whereas the
variations of the hydrodynamic currents and the couplings between them occur via processes
which are slow. The precise meanings of “fast” and “slow” are neither defined as an input
to the theory, nor are the meanings provided by the theory. Presumably there must be some
minimum separation in time scales between the fast and slow time scales in order for the
theory to be valid.

Of interest to the present study is the prediction, developed in [13], of the leading order
terms of the momentum current correlation function and the heat current correlation func-
tion. These are predicted for a system of general dimensionality, d. For 1D the prediction of
[13] can be easily shown [19] for long times to be

Ao M Myny 1\
Cf(’)‘[(Folﬂ*(zDT)l/Z}(H) ’ (15

@ Springer



Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 7

. K, 1 \2
Celt) [(Fs)‘/z} <H) , (15b)

where Dy = m« /pcp is the thermal diffusivity, I'y = (y — 1) Dy + D is the sound damping
constant, k is the thermal conductivity, D, = (4n/3 + ¢)/p is the longitudinal diffusivity,
n is the shear viscosity (which vanishes for 1D) and ¢ is the bulk viscosity. Here m is the
mass per particle, p is the mass density, y = cp/cy is the ratio of the specific heats, cp is the
specific heat capacity per particle at constant pressure and cy is the specific heat capacity
per particle at constant volume. The remaining constants in (15) are the thermodynamic

quantities
1 y—1 ac
M, =—|1- , 16
i /32[ T ¢ <8p)] (o
Y 1 (- 172 1 [dcp N 1 [(dap\ T 16b)
o= St T apep\o1 ), a2 \ar ), ]
2
C
Ki-= 25, (16¢)

where c is the adiabatic speed of sound, s is the entropy per particle and ap = (1/L) x
(0L /dT)p is the thermal expansion coefficient.

The Green-Kubo integrands in (15) have several important features that are worth noting.
First of all, their power law dependence on ¢ is of great interest; the predicted # ~'/? behaviour

(equivalent to power spectrum behaviour C;(w) ~ w~ /2 at small w) is not in agreement
q p P! g

with more recent theoretical [20, 21, 26] or numerical [20, 22] results. Thus, it is tempting
to dismiss the prediction as entirely incorrect for 1D. However, as was shown in [20], in 1D
a careful examination of (15) for the case of y = 1 yields a prediction that any c ()~ =172
term is zero (raising the possibility of a finite bulk viscosity) and Cc(t) ~ 112, Simulations
in that same paper confirm this prediction for a chain with quartic interparticle potentials.
Much more importantly, we showed in [20] that by interpreting I'; as a frequency dependent

phenomenological parameter I'y(w) obtained from simulations of C’; (w) at relatively high

frequency, the éK (w) could be predicted and agreed with simulations at low frequency. Thus,
it is possible that (15) is only “minimally wrong” by which we mean that (15a) and (15b)
are approximately correct if they are interpreted as relations between time dependent I'

and Dy for short times and C; and C at long times. We do not specify what constitutes
short or long; rather (15) is to be viewed as a pair of renormalization group equations in
which every CA'g and éK at long times becomes the input for the Iy and Dy at the now
short times for the next iteration. The toy model introduced in the appendix of [20] was

meant to illustrate this feature. If C ¢ (w) and C’K (w) have the frequency dependence w ™7 for
some range of small w then over a well defined range of much smaller @ they will vary
as w~ 9 with ¢ = (1 — p)/(2 — p). This cascade will eventually terminate at the fixed point
g=p=p*=3—+/5)/2~0.382. Note that (15) is a special case of this renormalization
group flow; an initial constant I'; and Dy implying p = 0 give rise to ¢ = 1/2 which is the

dependence C{ and C o @™/ or equivalently the long time tails oc t~'/2 in (15). If we

now set p = 1/2 then the next frequency power becomes ¢ = 1/3 and this is the universal
behaviour predicted in [26]. However, we do not agree with the authors of [26] that there
are no further renormalizations. In our view the w~!/3 dependence of the current power
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8 G.R. Lee-Dadswell et al.

spectra also applies only over a limited frequency interval and will, at even lower frequency,
be replaced by an w~% dependence and ultimately by w~?". Similar comments apply to
the attempt to derive a w~!/*> dependence of the current power spectrum from a version of
mode-mode coupling theory in [9].

The simulations in [20] tested a very small part of this picture as they relied on the van-
ishing of M,_ and My for y = 1 and the fact that K, _ = ¢?/B%. The vanishing of M _
and My for systems with ¥ = 1 and the simple form of K, _ expresses the fact that heat
is carried by weakly damped sound modes and does not require the full blown machinery
of mode-coupling theory. In the present paper we describe much more significant tests. In
particular, one of the implications of our renormalization group interpretation of (15) is that,
at long enough times, Iy and Dy will have the same frequency dependence. In this case

the ratio lim,_, o, C‘{ )/ éK (t) =1lim,_,o CA'; (w)/ é‘,c (w) should approach a constant at suffi-
ciently low frequencies. We speculate, given the assumptions in [13, 14] that “sufficiently
low frequencies” means on time scales longer than those of the processes which establish
and maintain local thermal equilibrium.

This ratio of transport coefficients, which we expect to be constant in the thermodynamic
and long time limit, is similar to the Prandtl number defined as Pr = v/ Dy, where v =1/p
is the kinematic shear viscosity. However, our ratio is frequency dependent and involves the
bulk viscosity. As a convenient dimensionless ratio we define the bulk Prandtl number

Pr, = hm Prg (w) = 11m M = lim kB {(@)

. a7
w—0 m,BC (w) w—0 m K(CL))

From (15) and (16) we obtain

,B r 1/2
Prc=ﬁ|:M+_+<2DT> MHH:I (18)

which is an implicit equation for Pr, since

Iy cpg cp
=(y—1 —=(y -1 — Pr,. 1
D, y—D+ o y—D+ PPRaL: (19)

As a first approximation we observe that cp¢ /(mk) is normally quite small for FPU systems
of the type studied here. Assuming this we can write

ﬂ y — 1 1/2
Pr{approx — W |:M+_ + <T> MHH]~ (20)

We can find the exact Pr, explicitly by noting that (18) and (19) combined are a quadratic
in Pr, which can be solved to give

P — sz — 2 )/—1
P M +—M +M1 M, + M, + ) 21
re = 4kB h ]\/sz S 16](32 h 2 ( )

where we must take the positive solution of the quadratic for consistency with (20) in the
appropriate limit and where for compactness we have written

M= M., (22)
mc
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— B
My =—Mpup. (22b)
mc

It must be stressed that this result should only be correct in a low frequency range, below the
frequencies of processes which establish and maintain local thermodynamic equilibrium. We
will see in Sect. 3, over the range of parameters where this frequency regime is accessible
to simulation, that the above provides a good prediction of the bulk Prandtl number in the
system of interest.

3 The Cubic-Plus-Quartic Chain

We consider a 1D chain system with nearest neighbour forces governed by a cubic-plus-
quartic interparticle potential. The Hamiltonian is

N

H( = p_,2 Yt —a —a)? E g —a)t 23
PO=) | -+ 3@ -1 -+ @ —g -], (23)
i=1

where p; = mdg; /dt is the momentum of the ith particle, ¢; is the position of the ith particle,
m is the mass of each particle, a is the equilibrium interparticle spacing which is a fixed,
arbitrary, system parameter and o and B are force constants. We use periodic boundary
conditions so that gy = gy — L. This is the familiar FPU-af system with the harmonic
force constant set to zero. We use B for the coefficient of the quartic term in the potential
so as not to confuse it with the inverse temperature, § = (kg T)~!. We also choose to work
with interparticle distance as coordinates, rather than absolute particle position, so we define
Xi=qi—qi-1—a.

There are a number of statistical mechanical quantities of interest to us in this work
and these are most easily calculated in an isobaric ensemble. The statistical weight of a
configuration is proportional to the Boltzmann factor modified by a pressure term and L =
gy —qo = Na+)_ X; is allowed to take on all possible values so that the partition function
takes the form [35]

1
exp (—BG) = h—N/dpdleP [—B(H+ PL)]

(o] oo N
:e_wahLN[/ d,,/ dxp(ﬂ,p)] , (24)

where dpdq denotes the phase space volume element for particles i = 1,..., N, h is
Planck’s constant, G = G(f, P, N) is the Gibbs free energy and P is the pressure (same
as average force in 1D). We note that there is no need for a prefactor of 1/N! in the partition
function because each particle is connected only to its neighbours so that particle ordering
makes the particles distinguishable. The N statistically independent factors, F'(8, P) are

2 B
p—+gX3+—X4+PX>] (25)

F(B. P) =exp[—ﬂ <2m X0+

We will restrict our chain simulations to zero pressure but the formal expression (25) that
includes P # 0 is convenient for deriving various thermodynamic quantities. By defining
characteristic length and time scales and using these to express the dynamical variables X

@ Springer



10 G.R. Lee-Dadswell et al.

and p in dimensionless form we can eliminate much of the apparent parameter dependence
in (25). We choose length and time units

m2p 1/4
Ly = (,BB)_IM, fy= (T) , (26)
and write
mﬁo
X=twx, p=-—"u, @7
0

where now x and v are dimensionless. Our Boltzmann factor in these new dimensionless
variables is

U2 .X3 X4
F(,B,P):exp(—?—a*?—Z—P*x>, (28)

which shows that the parameter space of the model is two-dimensional with two dimension-
less parameters defined by

P* = 8P, (29)
Bl
*zgmn (30)

We are currently interested in the zero pressure system. This leaves us with a parameter
space of interest that is one-dimensional and we can study the whole parameter space by
fixing any two of «, 8, and B and varying the third. Because we have previously studied the
pure quartic case [20] it is convenient for us to fix # =1, B =1 and vary «. As can be seen
in (30), varying « is equivalent to varying the temperature, 7. To summarize, our units are
definedbym=1,B=1and g =1.

The o* = 0 case is the pure quartic chain studied in [20] while in the limit of «* — 0o
the system approaches the harmonic chain. This can be seen by expanding the potential, V,
about its minimum. With reference to (23) we define

o B l (aF 1
VX)) =X+ =X'=—(=x+-x*). 31
W =3X+3%X=3 ( 37" Gl
This has its minimum at x.q = —a*. Expanding around the minimum using x = xq + x we

can write the dimensionless, scaled potential as

2
. 20" 1
“2 Sx? — %sf +gox (32)

BV (6x) = const. +

If (32) is used in the Boltzmann factor the harmonic term limits the magnitude of §x to
O(1/a*). Thus, the cubic and quartic terms will be O(1/e*?) and O(1/a**) respectively
and, hence, negligible in the «* — oo limit. Between the extremes of «* =0 and «* — o0
the potential is both highly anharmonic and asymmetric and this is precisely what we need
for a significant test of the Ernst formulae (15) in a case distinct from that examined in [20].
The fact that by varying o* we can also explore the crossover from strong to weak anhar-
monicity is an added bonus. Given the above discussion, removing the constraint of zero
harmonic force constant in (23) would probably not yield much additional information.
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Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 11

We are now ready to discuss the various quantities involved in calculating Pr.: c, cp, v,
Dy, T, ap, dap /0T, dcp /0T, dc/dp. We will make use of the constant pressure partition
function (24) which reduces to

2rm\ V2 o N
exp(—,BG):(ﬂhz> e*Nf”’“[/ dXexp[—,B(V(X)+PX)]], (33)

with V(X) given by (31). In deriving the thermodynamic quantities of interest we repeatedly
encounter averages of the form

[ dXX"exp[-B(V(X) + PX)]

X (B, P)=4"%, = (X") = ) (34

p 0 [= dXexp[—B(V(X) + PX)]

which is the nth moment of X. These moments satisfy the recursion relation
(n+ DX, = BlaX,s3 + BXpia + PXoi1]. (35)

Hence, besides the trivial X, = xo = 1, we need only evaluate X, and X, as numerical
integrals. Furthermore, the temperature and pressure derivatives of X, follow directly from
(34). We get

Yn = _ﬂ(yn+l - YHYI)’ (363)

— o — — _ B — — _ —
8,8 Xn = g(XnX3 - Xn+3) + Z(X11X4 - Xn+4) + P(XnXl - Xn+1)' (36b)

The relations (36a) and (36b) form the basis for our subsequent derivation of the ther-
modynamic quantities. For future reference we list below a number of the most important
thermodynamic expressions characterizing the cubic-plus-quartic chain. As a useful starting
point, we obtain an equation of state via

L—BG—N X, (8, P 37
<>_ﬁ_ (a+X1(B, P)) (37)

and hence our equilibrium spacing between neighbouring particles is

€=%=a+yl=a+€of1- (38)

The fact that (38) depends on the arbitrary spacing, a, implies that £ cannot appear in any
expression for a thermodynamic quantity except as a trivial multiplier. The average energy
per particle is found from the enthalpy, (E) + P(L) = 3d(8G)/9p, and is

@_[LJ’_QY_’_ X:|

N |28 37T 4
U a1 %
—E[5+?x3+1x4]- &9
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12 G.R. Lee-Dadswell et al.

We obtain the thermal expansion coefficient by differentiation of (38)

1 1 [a¢
ap=—-—=|—
PT kT \98),

1 1 — _
:Zkgrz[ (Xs— XX 1)+—(X5 4X1>+P<X2—X12)]

Z() o 1

ﬁ[—(m—)@xl)—l— (s —x4x1) + P*(x2 — X3 )] (40)

Similarly, the isothermal compressibility is

19 ¢’
xTz—ZB—Pe_ﬁ<X2—X1 )—ﬂ%@—fﬂ» 1)

The specific heat capacity per particle at constant pressure is

Cp —kpB® 9
Cp=—=
N N 0B

—z{E) + P(L)]

%2 *

k| s T+ L — ) + = (s — T
= KB ) 9 X6 — X3 6 X7 — X4X3 16)68 X4

(42)

2P*a* . _ _ P* _ W2 = =2
(X4—X3X1)+7(X5—X4X1)+P (X2 —x17) |,

and for the specific heat at constant volume one can use the identity cy = cp — £Tap?/xr
with the results from (40) and (41). The specific heat ratio y = cp/cy, combined with (41)
gives the adiabatic speed of sound ¢ = (1/pyx;)!/?, where x; = x7/y is the adiabatic com-

pressibility, as
¢ e\’
A=Y :<_> —— 43)
mxr fo X2 — X1

As noted above, the sound speed varies linearly with £ as expected; this is its only depen-
dence on the arbitrary spacing, a. In fact the arbitrariness is absent in the Lagrangian picture
which we adopt for our simulations; here the natural unit is ¢/€ and the speed of sound is
viewed as being measured in terms of particle number per unit time (i.e. it is a “hopping”
frequency for a disturbance to move from one particle to the next).

At zero pressure for both limits «* = 0 and o* — oo, the specific heat ratio y = 1.
Numerical evaluation of the formulae above shows the maximum y >~ 1.544 at o* ~2.418.
This value of o* serves as a reasonable central value for our chain simulations.

4 Evaluation of the Bulk Prandtl Number

We wish to predict Pr, as a function of «*. In order to do this we need the thermodynamic
expressions from the previous section. We must also be able to evaluate the Ernst current
amplitudes (16). Let us now reduce the expressions of the current amplitudes to a form
which is useful for numerical evaluation for the cubic-plus-quartic model. K, _ is already in
a convenient form. We note that /K, _ is clearly proportional to the mean lattice spacing, £,
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Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 13

as is expected of a quantity proportional to a current. But this same linear dependence is not
evident in M, _ and My . We rewrite them as

1 -1 dc
My =—m, 2 m=Y""_P(%) (44a)
B2 apT c\op/,

1 1 an 1 Bap
Mun = —mun?, =y -Dl1- ) L 2 (Z22) | @44
HH = SgMuns M (v )|: ey <8T )P + 2 < 3T )P] (44b)

We now express m gy and m, _ in terms of the quantities ¢/¢ and £ap which do not depend
on the arbitrary spacing parameter, a. Doing this, and noting the structures of (44), which
involves expressions of the form (1/A)(0A/dT) and (1/A)(d0A/dp) we are able to express
them as

mi— _ Y -1 dln(¢/c) (45a)
l LapT ol4 s’

mpygu _ y—1/dIn(Cap/cp) (45b)
¢ Lap aT p

The specific heat relation cp — cy = £Tap?/xr or (y — 1)/(Lap) =apyT/(xrcp) allows
us to eliminate the potentially vanishing denominators in (45), so that these relations remain
valid in the limits where y — 1 and ap — 0. We replace (45b) by

myp _ apyT (3111(50!P/CP))
P

46
L XTCp oT ( )

and note that this can be evaluated by the procedures described in Sect. 3. These procedures
do not apply directly to the derivative at constant s in (45a) but we can start with the chain

rule and write
0 oT d oP 0
— | =\= — | +| = — ] . 47
L) aL J \oT /, ot ), \OP /),

The coefficient (d P/d¢), of the second term in (47) is —1/(€xs) = —y/{xr), which is
expressed entirely in terms of quantities found in Sect. 3. The coefficient of the first term

can be rewritten
or\ oT as\ T (aP
ae ), \as /), \oae), ¢y \O3T),

T (0P ol T
=L (%) (=) =-2&, (48)
Cp a4 T oT P XTCp
in which we have used the Maxwell relation (0.S/3¢)7 = (0 P/dT),. Thus, in summary, we
can calculate m_ by

&:L[KQPT (aln(TE/c)) +<81n(€/c)) ] 49)
Y4 KXT Cp oT P P T

which is expressed entirely in terms of the quantities found in Sect. 3. The derivative cal-
culations are very messy and algebraic packages such as Maple are very useful to ensure
correctness of the final results. With m,_ and myy in hand we can now proceed to cal-
culate Pr, for any value of a* using (21). We thus obtain the theoretical curve shown
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14 G.R. Lee-Dadswell et al.

Fig. 1 The value of the bulk
Prandtl number, Pr{, asa
function of the dimensionless
parameter o*. We have fixed
B=1,=1,m=1,P=0,and
varied o by varying the cubic
coefficient . The simulation
points for a* = 1.5, and 3.2 are
shown even though, at the lowest
frequencies examined in those
simulations, the hydrodynamic
regime had not yet been reached

approx

. - Prl;
-8 — PrC -

. approx
M, term in Prg

M ,_term in pr,/PPr% 1

° Prc from simulations
: : : | |
1.5 2 2.5 3 3.5

o

in Fig. 1. As discussed earlier, we are restricting our attention to the region in parameter
space surrounding o* 2~ 2.418. At this value of «* the value of y is maximized. We see in
Fig. 1 that Pr; has a pronounced local minimum at o* 2~ 2.418.

The values of Pr, obtained from simulations, described in the next section, can be seen
in Fig. 1 as well. The simulation results were obtained by varying o with kT =1, B =1,

P =0, m = 1. As will be discussed, the simulations indicate that C (@) and é‘K (w) go as
the same power of @ as w — 0 and so we find a well defined value of Pr, at each value
of @*. As can be seen in Fig. 1, the agreement between the simulations and the theory is
good. This supports the physical picture that we have been proposing.

5 Numerical Results

We carry out molecular dynamics simulations of the system described by (23) in peri-
odic boundary conditions for various values of the dimensionless parameter «*. We choose
N = 2" and typically run for 2% time units, outputing 4 times per time unit. We set m = 1,
kgT =1, B=1 and a = 0. We vary o* by changing «. This, combined with our Hamil-
tonian (23), defines our units of length, time and energy. In particular, distance and time are
measured in units defined by (26). Each run is initialized by randomly generating the posi-
tions and momenta of the particles according to an isobaric ensemble. With the algorithms
that we use we can achieve good accuracy using 8 time steps per time unit. We output the
sums over all particles of the momentum current and energy current. Then, using the meth-
ods outlined in [20], we calculate the momentum and energy current power spectra. In this
work we have used eighth order, sixth order and fourth order symplectic algorithms. The
eighth order algorithm was used for the ¢* =0, o* = 2.0 and o* = 2.418 cases. It is a re-
finement of the algorithms presented in [38]. This algorithm is the same as the one used in
[20]. It was realized later in this work that relaxing the symmetry used by Yoshida to obtain
this eighth order algorithm allows the development of sixth order algorithms which are, nev-
ertheless, more accurate than the eighth order one in terms of the error in energy. Further,
although the energy error was increased significantly by using a fourth order symplectic
algorithm there was still no secular change in energy. As a result, there is no appreciable
loss in accuracy when a fourth order symplectic algorithm is used to find the total momen-
tum and energy currents as we do in this work. Hence, the later simulations in this work
(a* > 1.8) were carried out using fourth or sixth order symplectic integrators. These were
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Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic 15

checked against small numbers of runs using the eighth order routine to verify that the ac-
curacy was preserved. The coefficients of our fourth and sixth order integrators appear in
Appendix A.

From our simulations we thus obtain C’; (w) and C’E (w) (recall that in the Green-Kubo
equation for k (w) we can freely replace éK with CA’G). We also use the theory developed in
Sect. II of [20] to produce a theoretical prediction of CA’E (w). Varying o* we see that there

appear to be distinct regimes in which the current power spectra behave in different ways.
Plots representative of these regimes are presented in Fig. 2. For reasons discussed in detail

L L e I B ) o o o e L o e o N I o s e o o
a) r 1 ¢) L ]
= = 1
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N =
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Fig. 2 Current power spectra for a representative sample of values of a*. (a) a* = 0 (pure quartic),

(b) a* = 2.0, (¢) a* =2.418, (d) o™ = 2.8. The theoretically predicted curves for €, were obtained by
the method described in [20]. The approach of the observed energy power spectrum to the theoretical curve
occurs at lower frequency as the value of o™ is increased
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12

in [20] the * = O case is special with é; (w) — const and with ée (w) > o *asw— 0.

For all nonzero values of a*, é{ (w) — o0 as w — 0. We note that the observed C‘E (w)
always approaches the theoretical prediction, but that this approach happens at progressively
lower frequencies as o™ is increased.

Let us examine the different frequency regimes present in the transport in these systems.
In the highest frequency regime, defined by wt >> 1 where 7 is a typical mode lifetime,
damping plays no role. Accordingly we call this the collisionless regime. This frequency
regime will be examined in Appendix C. At very small frequencies the hydrodynamic mode
coupling model presented in [20] accurately predicts the energy current power spectrum.
This suggests ballistic transport of heat via low frequency sound modes which damp via
a sound damping coefficient which is frequency dependent. Further evidence that this is

occuring in this regime is that, for a* # 0, CA‘; and CA’E go as the same power of w in this
regime. This is consistent with the picture presented in our toy model presented in [20].
This can be interpreted as evidence that local equilibrium is established and maintained by
fast processes and gives rise to the mode coupling behaviour, as is assumed in [13]. We call
this frequency regime the hydrodynamic regime.

As we increase o* we see that an intermediate frequency regime becomes established.

This regime has a Ce(w) ~w™ 2 part which gives way to a constant C.(w) plateau. This is
characteristic of the existence of a single relaxation time in this regime. We note that as o*
increases the interparticle potential becomes more harmonic in the vicinity of its minimum.
Thus we might expect that, in some frequency regime, the behaviour of the system might
look more and more like a harmonic lattice with small anharmonic perturbations as we
increase o*. This resembles the well known Boltzmann-Peierls picture of heat transport in
which heat is carried at the sound velocity ¢ by phonons which scatter over some mean free
path. In the absence of defects the scattering is entirely due to phonon-phonon interactions.
It is known that, at least at first order, for 1D systems this damping cannot be due to the cubic
term (three phonon processes) [22, 29], so that the damping must be due to the quartic part of
the potential (four phonon processes). It is worth noting, however, that this argument is only
valid if the cubic and quartic coefficients are small. If the coefficients are as given in (32) then
the second order contribution due to three phonon processes can be comparable in size to
the first order contribution due to four phonon processes. In any case, given our speculation
that the Boltzmann-Peierls picture is correct in the intermediate frequency regime for this
system we refer to this intermediate frequency regime as the perturbative regime. We give
further evidence below that this picture is correct, though it should be stressed what we
may be seeing is superposition or interference of second order cubic with first order quartic
effects. We discuss this regime still further in Appendix B where we work with an FPU-8
model to avoid the difficulties of the second order cubic contributions. A puzzle is that we
see only a single relaxation time in the perturbative regime in simulations of our restricted
FPU-af model whereas we see a range of relaxation times in the FPU-8 model

It is simple to estimate Pr, (w) from our simulation results by calculating C; / (mﬂC ) for
each frequency. A typical example is shown in Fig. 3. At the lowest frequencies examined
in the simulation Pr,(w) seems to have converged to a constant value. This is indicative of
the hydrodynamic regime being reached at these frequencies. For each value of o* we take
the average value of Pr;(w) in the frequency range for which it appears to have converged
and use this value as an estimate of Pr,. The resulting values of Pr, for the values of o*
examined are seen in Fig. 1. For values of «* both higher and lower than the range examined,
the frequency regime in which Pr,(w) converges to a finite value is pushed to frequencies
too low to be easily accessible. The simulation points are shown for * = 1.5 and o* = 3.2
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Fig. 3 The frequency dependent 2
bulk Prandtl number as obtained

by simulation of the L
cubic-plus-quartic chain with

a* =2.0. The horizontal dashed
line is our asymptotic estimate
and is given as a point in Fig. 1

2k

log,[Pr, (@)]

224 20 -16 -12 -8 -4 0
log,(0/27)

even though the simulations did not probe low enough frequencies to see the hydrodynamic
regime at those values of o*. Thus the disagreement seen in Fig. 1 for these two points
should not be construed as a failure of the theory to predict Pr,. Similar comments apply to
simulations carried out for a* = 3.6, 4.0, 4.2, 4.4 and 4.6. Indeed, via methods from [20] we
can predict the frequency at which we should see the crossover to the hydrodynamic regime
and for a* = 3.2 the crossover should occur at w/2w 2~ 2726, 5o the lack of agreement seen
for o* > 3.2 is expected. For this reason we have not shown results for «* > 3.2 in Fig. 1.
In the range from o* = 1.8 to o* = 2.8, where the hydrodynamic regime was accessible,
the agreement between simulation and the prediction from (21) is good. The standard errors
in the simulation values are too small to be shown. However, significant systematic errors
are expected to be present since we are taking the average value of Pr,(w) which is going
asymptotically to a constant value. In particular, the value of Pr,(w) may not have been
very close to its asymptotic value for the case of «* =2.418. The Pr, vs. w curve shows a
discernable slope at the lowest frequencies examined for this value of o*.

Let us examine the perturbative regime, where the behaviour resembles damping with a
single relaxation time. This regime covers a wider frequency range as we increase a* be-
yond about 3.0. An example of this is shown in Fig. 4 in which a Lorentzian fit is shown to

C. (w). We must stress that this fit is not the w — 0 limit of C‘e (w), since the hydrodynamic
regime is at lower frequencies than those shown in Fig. 4. If this behaviour applied as w — 0
then we would see a finite «. Hence, if we ignore the behaviour in the lower frequency hy-
drodynamic regime, we may define an effective thermal conductivity in the single relaxation
time regime which is just the zero frequency value that we obtain by a Lorentian fit to the

heat current power spectrum in this regime. This effective, perturbative regime, thermal con-

ductivity is kb™™ = [Cf(w = 0)]/2. We can ask how this k depends on the temperature.

Noting that we can think of varying o* as equivalent to varying 7 we can define an effective
temperature, 7*. From (30), if B=1and a = 1, a* ~ T~/4. Thus, we define

T = (a®)*. (50)
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Fig. 4 The current power 20
spectra for the cubic-plus-quartic
chain with «* = 3.2. The
hydrodynamic regime is at lower
frequencies than are probed in
this simulation. The perturbative
regime is very evident with the
low frequencies following a
Lorentzian shape. A Lorentzian
fit to the energy current power
spectrum is shown. The spectrum
is well fit by

it = e (0)/(1 + 0 /) with

Ce(0) =2.03 x 103,
wy =691 x 1074

energy current power spectrum (simulation)
——— momentum current power spectrum (simulation)
— — - Lorentzian fit to energy current power spectrum

3 \ \ \ \
2(220 -15 -10 -5 0
log,(w/21)
Fig. 5 The value of the 14
perturbative regime plateau value
of the thermal conductivity, 3 |
ngnurb, as a function of the N
effective temperature 7* for low 12 \‘\\. 7
temperature (large ™). We have — \\\\\
fixedB=1,=1,m=1,and 5 i e 1
varied o* by varying the cubic 5 T
coefficient . The dotted line is e S 10 NG b
for reference and shows (T*)*2 g/ ;\\_
behaviour g r 1
8 _
L *
6 \ \ \
-6.5 -6 -5.5 -5 -4.5
In(T*)
A plot of k2™ vs. T*, is shown in Fig. 5 and we see that for low temperature xf"™

goes as (T*)72. This is consistent with the well known result of a four phonon Boltzmann
equation [24, 30]. We see this as strong evidence that, for approximately harmonic lattices,
there is a perturbative regime at frequencies higher than the hydrodynamic regime. Whether
this perturbative regime is well described by the four-phonon Boltzmann equation in every
detail remains to be checked; a limited comparison is given in Appendix B.

In Appendix B we also indicate why a Boltzmann-Peierls equation approach fails to
predict the chain bulk viscosity.
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6 Conclusions

Several key points are worth pointing out immediately.

L.

For the cubic-plus-quartic system, in general, there are at least three distinct frequency
regimes. The lowest frequency regime, which we call the hydrodynamic regime, is char-
acterized by ballistic transport of heat via long wavelength sound waves. The next regime,
which we call the perturbative regime resembles a harmonic chain with a quartic per-
turbation in some respects. In this regime the transport of heat can be viewed as be-
ing damped by four phonon processes; the damping appears to be governed by a sin-
gle relaxation time in the cubic-plus-quartic system but by a range of relaxation times
in the absence of a cubic term as described in Appendix B. At the highest frequen-
cies observing times are too short for any appreciable phonon scattering. We call this
the collisionless regime and we examine it further in Appendix C. A striking aspect of
these results is that for nearly harmonic systems the perturbative regime and the hydro-
dynamic regime are clearly separated. For more anharmonic systems the perturbative
regime is not visible because the hydrodynamic regime is established at higher frequen-
cies.

The theory developed in [20] predicts the thermal conductivity well in the hydrodynamic
regime. This theory is based on an assumption of heat being ballistically carried by sound
waves. Thus, it is reasonable to conclude that the momentum transport and heat transport
are strongly coupled. This, combined with the fact that the power spectra have the same
power law behaviour, is evidence that a theory like the toy model from the appendix
of [20] describes the transport of both quantities. The current paper shows that, using
the results of [13], we can extend the theory in [20] to predict the bulk viscosity as
well.

The regime that we have called the perturbative regime is characterized by a & ~ T2
behaviour. This is indicative of damping of modes by 4-phonon scattering (or likely a
combination of first order effects from 4-phonon scattering and second order effects from
3-phonon scattering) as one would calculate using the four-phonon Boltzmann equation
[24, 30]. However, this identification is speculative.

For a system like the one examined here with y # 1 the bulk viscosity is infinite. At suf-
ficiently low frequencies the momentum current power spectrum has the same power law
behaviour as the heat current power spectrum. The same conclusion seems to have been
reached in [9], though we disagree with the power law dependence of the correlation
functions found in that reference as we believe further renormalizations are necessary to
reach the w — 0 limit.

In the hydrodynamic regime the mode-coupling theory of Ernst et al. [12—14] fails to
correctly predict the correct power law divergence of the transport coefficients. How-
ever, it does predict the correct ratio between the thermal conductivity and the bulk
viscosity (the bulk Prandtl number). This theory assumes that local thermal equilib-
rium is maintained by fast processes whereas the hydrodynamic transport of heat and
momentum is carried out by slower processes. The success of the theory in predict-
ing the bulk Prandtl number is evidence that the assumptions of this theory are cor-
rect for a 1D anharmonic chain with y # 1. Further, our results allow us to quantify
what is meant by “fast” and “slow” in this system. Specifically, the mode cascade of our
model from [20] shows that on any time scale within the hydrodynamic regime the slow
relaxation processes on that time scale are produced by much faster processes. Thus,
the meaning of “slow” is simply the time scale on which we are observing the relax-
ation process. The meaning of “fast” is the time scale of the much higher frequency
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modes, @’ = ck’, which dominate the relaxation process at frequency w. These dominant
modes satisfy Fkrk/z =~ w. This is discussed in detail following equation (10) in [20].
Thus, the meanings of “fast” and “slow” vary with the time scale that we are examin-
ing.

We have, in this paper and in [20], described heat in 1D systems as being ballistically
transported by sound waves which are weakly damped. Purely ballistic transport would have
no damping at all, would exhibit transport at constant speed, and would exhibit C, (t) =
const. Such purely ballistic transport of heat would resemble second sound in which heat is
transported at constant speed (the speed of ordinary sound in 1D); an important difference
is that second sound exists over very restricted temperature and frequency windows [4]
whereas ballistic transport is not subject to these restrictions. The picture of transport we
describe is really “damped ballistic transport”, rather than “pure ballistic transport”, since
our model has a mixture of scattering (at short wavelengths) and no scattering (at long
wavelengths). Thus our model can be viewed as “superdiffusive transport”, and is possibly
equivalent to a “biased (Levy) walk” description [8, 10]. It would be interesting to see if
the Levy walk model can produce the hierarchy of power laws that we have found in our
damped ballistic transport model.

The existence of the perturbative and hydrodynamic regimes is highly significant when
interpreting our results and the results of others. It is possible for the plateau in the per-
turbative regime to look as if (w) is converging to a finite value at @ — 0. However, if
lower frequencies (larger systems) were examined the hydrodynamic regime would be seen
and « (w) would be seen to diverge. Further, the extremely low frequency at which the hy-
drodynamic regime asserts itself in the system examined in this paper is below the lowest
frequencies examined throughout much of the literature (for a summary of relevant results
see [22]). As always, extreme caution must be exercised in claiming that one is seeing the
thermodynamic limit.

Another interesting feature of these results is that it seems to be valid to examine frequen-
cies lower than the fundamental frequency of the system. That is, we can observe processes
on time scales longer than L/c, the time for a long wavelength disturbance to travel around
the system one time. Indeed, provided our observing time is shorter than the relaxation time
of the longest wavelength sound mode, we see no significant variation in the power spec-
trum with the size of the system. This relaxation time can be estimated either by using the
Ernst, et al. [13] hydrodynamic formulae interpreted as we have done in this paper or by
extrapolating from smaller systems where changes in the power spectra can be seen with
changes in system size. An explicit example of the latter is the simulation of Lepri, et al.
[23] which is limited to size N < 2048 and clearly shows system size dependence. In con-
trast N = 16384 simulations were used for the pure quartic model in [20] to avoid finite
size effects and confirm the predicted crossover in the energy current power spectrum to an
»~'/? dependence.

There are several areas of further work which are needed to complete the above picture.
While the 4-phonon Boltzmann equation calculation has been done for the steady state case
[27], no such calculation has been carried out for the equilibrium state. This calculation
should be carried out and the overall amplitude of the damping in the perturbative regime
needs to be calculated to see whether the four-phonon Boltzmann equation can be used to
quantitatively predict the heat current power spectrum in the perturbative regime. Also, we
do not have a satisfactory explanation for why, in the perturbative regime in the FPU-o8
model, a single relaxation time dominates. This question might be answered by an equilib-
rium calculation. A summary of the results of the nonequilibrium calculation in [27] and
analysis of how these results can be interpreted in the context of this study is presented in
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Appendix B. Also discussed in Appendix B is the failure of the Boltzmann-Peierls approach
for the calculation of the chain bulk viscosity. Clearly a completely new approach is required
for this property.

To show that the physical picture proposed in our toy model is correct, simulations would
need to be carried out which probe systems to low enough frequencies to observe the onset
of the next power law behaviour in the power spectra. We predict that for the cubic-plus-
quartic system at o* = 2.0 the “kinks” in the power spectra corresponding to the onset
of the next power law behaviour in the series should occur somewhere below w ~ 2728,
For now, such low frequencies are beyond the practical limits of our simulations. However,
some other system might demonstrate the transitions between power laws at more accessible
frequencies.
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Appendix A: Symplectic Integrators

There is by now a very large literature on improvements to the Yoshida integrators and a
particularly extensive list of alternatives is given by [28]. We have not tested or used any of
the versions that require calculations of the force gradient in addition to the force. Instead
we have opted for those schemes in which improvements are obtained solely by relaxing
the requirement that the integrator contain the minimum possible number of steps. This can
reduce, in some cases dramatically, the size of the intermediate steps in the integrator and
will typically improve both stability and accuracy at a small increase in running time.

We have tested a limited number of integrators and give below two integrators, one 4th
order and one 6th order, that we have found nearly optimal and used in production runs. Both
are “position” integrators which means the first move is a position update. This is followed
by a momentum update, then position, in the alternating sequence

Xoow =X + n%w(lmr, Puew=p + fw(2)AL,

xm,w=x+%w(3)At, Dnew =D+ fw@At..., ey
where f is the force. The coefficients are as follows.
4th order integration coefficients
w(l) =w(9) =5/3/(3 +/39), w2) =w(8) =3/4, 2

wB) =w) =-2/3/(6++39),  w@ =w®)=—1/4,
w(5) =23/3/(4++/39)

6th order integration coefficients
w(l) =w(17) =0.055,
w(2) = w(16) =0.1521292418198012208708832,
w(3) = w(15) =0.2381129197090666122795175,
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w(4) = w(14) = 0.3450759351638895426864652,
w(5) = w(13) =0.5086956937118671097820404,
w(6) = w(12) = —0.0432317055841977505550037,
w(7) =w(11) = —0.4259353129298358880967277,
w(8) = w(10) = 0.0460265286005069869976553,

w(9) = 0.2482533990178043320703396
(53)

The 4th order coefficients are very close to the optimal equation (62) coefficients in [28]
but have the advantage, as analytical expressions, of being easily programmed for arbitrary
precision. The 6th order coefficients are based on the equation (83) “momentum” integrator
of [28] but have an added position step at the beginning which has been adjusted to further
improve the integrator. It is worth remarking that finding new solutions to the required non-
linear constraint equations defining a symplectic integrator is a very difficult search problem
but that modifying an existing one by small parameter increments is easy using Newton-
Raphson iteration.

Appendix B: Phonons and the Boltzmann-Peierls Equation

Our ultimate goal is to test the accuracy of the Boltzmann-Peierls approach to thermal trans-
port in 1D chains in the frequency regime between the hydrodynamic regime discussed in
the main sections of this paper and the collisionless regime discussed in Appendix C. How-
ever, at the present time the theory is not well enough developed to make definitive tests
possible. In this appendix we report on the more modest achievement of a comparison of
simulation with Boltzmann-Peierls in the relaxation time approximation. Even this has only
become possible because of the recent study [27] by one of us (BN) of the Boltzmann-
Peierls equation for a chain of weakly anharmonic oscillators in a thermal gradient. An
intermediate result in that study was an analytical formula that can be used to predict the
wave-vector dependent relaxation rate of phonons in the relaxation time approximation. This
in turn allows us to predict the energy current power spectrum which we compare to sim-
ulations based on the model used in [27]. The results are good enough to unambiguously
verify that the low frequency structure we see in the simulations is indeed due to phonon re-
laxation and that the Boltzmann-Peierls picture is qualitatively and even semi-quantitatively
correct.

The introductory part of our discussion relies heavily on results in [27]. To avoid ex-
cessive duplication we will use the same conventions as were adopted in that paper. The
relevant model is the FPU-B model, namely equal mass particles described by the classical
Hamiltonian similar to (23)

H=> H(pi X))
1p? K, , Ki_,
= - ) s AN 54
. <2m + + (54)
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where the sum extends over the N particles in the chain with X;, y = X; while X; is the de-
viation of a nearest neighbour pair separation from the equilibrium spacing a and is defined
as below (23). In the weakly anharmonic limit we can use the harmonic part of H to de-
fine the normal modes of the system. These are the phonons labelled by the N independent
wave-vectors k, = 2mwn/N and the phonon frequency

sin <]£> ’, wzp = 2 & (55)
2 V. m

has its maximum wzp at the Brillouin zone boundary while the phonon group velocity
uy = dwy /dk vanishes there. The K4 term in (54) gives rise to phonon scattering and is
treated in the Boltzmann-Peierls approximation in which the phonon occupation number
ny is treated as a local density and its rate of change by transport, dn; /9t + u;dn;/dx, is
equated to the rate of change by collisions, Ry (7;). In [27] only the transport term u; dny /dx
was relevant as the system was a steady state, non-equilibrium oscillator chain in a thermal
gradient. Here, for describing the relaxation of fluctuations from equilibrium in an otherwise
spatially homogeneous chain, only dny /0t is relevant. As in [27] we write the deviation from
equilibrium in terms of a new function g; defined by

Wy = wWzpR

(Sl’lk =nip — ean = ean(ean + 1)gk, (56)
where “/n; is the Bose factor 1/(exp(hwy/kpT) — 1). The transport term in the Boltzmann-
Peierls equation can then be written

ony 98k
= Uy + 1) ==, 57
ot eqny(“Ing + 1) a1 (57)

and this is to be equated to the net collision rate which to linear order in g is

9 K4
Rk(g) = —Eh F/dkl /dkza)ka)kla)k2a)k3
2

X (8k — 8k — 8k + &ky) “mi “ni,

x (“ngy, + Dy + DS (@ — 0y, — ok, + Opy)s (58)

where the ki, k, integrations are understood to be over an interval of 2 and k3 = k; +k, —k
mod 2. The rate (58) is based on Fermi’s golden rule and its derivation is standard textbook
material that we need not repeat here.

The general solution to “Iny (“/ny + 1)dgx/dt = Ri(g) can in principle be given in terms
of the solutions to the associated eigenvalue equation but to our knowledge these have
never been obtained and we do not attempt such solution here. Instead we make what is
known as the relaxation time approximation which is to set the deviations gy,, gi,, and
8k, in the integrand in (58) to zero. Then R;(g) becomes g, times an integral over equi-
librium distributions which we can choose to write as the wave-vector dependent function
—%ny (“Ing + 1) /7. That is, with this approximation, the solutions to the Boltzmann-Peierls
equation are

8r X exp (—t/7), (39
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with

“n (g +1) 9 Ky
77]( = Eth_z‘l/dkl /dkzwkwklwkzwk3
x “ng g (g, + D, + 1)

X §(wy — Wy, — Wk, + a)ks). (60)

Note that we are only interested in the classical limit in which case we can set “/n; ~
®n + 1 = kpT /hw; and the relaxation rate equation (60) becomes

1 k
L oin? <_> K, (61a)
Tk 2
9 KikpT\*
QL=Q(T)=— —_— ), 61b
(1) 167erB< K2 > (61b)
K = /dkl /dkszBlS(wk — Wy — Wi, + W), (61c)

where we have used also (55) to express wy in terms of wave-vector k. Equations (61) for
the relaxation time are exactly those derived by Pereverzev [31] but it should be recognized
that in the conventional language of phonon scattering both normal and umklapp processes
contribute to the integral K; in (61c). In particular, the divergence K; o k~!/3 derived in
[31] comes from that region of the integrand in (61c) which is entirely normal scattering. As
explained in [27], the particular power k~'/3 is a consequence of the fact that the deviation
of wy from linearity is, at small k, proportional to k3. This deviation from linearity also
dictates the form of the normal scattering process involved. Specifically, the phonon under
consideration which we take to be of a small wave-vector k is scattered by a thermal phonon
of much larger but still small wave-vector ke, = —4ak'/> where a > 1. The two resulting
phonons have wave-vectors —2a(1 /1 — 1/a3)k'? — (=34 /1 — 1/a3)k/6 + o(k). This
process, which is (31a) in [27], conserves (pseudo) momentum but is important because it
leads to a redistribution of phonons of wave-vector O (k) to O (k'/?) and at high temperature
is a rate limiting step in a cascade that eventually reaches wave-vectors where umklapp
scattering can occur. At low temperature it is the breakdown of the cascade that is the rate
limiting factor for momentum relaxation and not this process as assumed in [34].

For the exact evaluation of K in (61c) we refer the reader to [27]. The result, which we
use for the comparisons with the simulations, is

2 3/2
Ki=2 (5) {z7"°B(1/3,1/3)F(1/3,1/3;2/3; 2)

—z'°B(2/3,2/3)F(2/3,2/3;4/3; 2)}, (62a)
7= % sin’ (g) (62b)

where B(x,y) =T'(x)I'(y)/T'(x + y) is the beta function and the F =, F} are hypergeo-
metric functions.

The relaxation time approximation which reduces the collision rate in (58) to that in (60)
deserves some comment. In the thermal gradient problem for which the exact Boltzmann-
Peierls solution was obtained [27], there are several processes that contribute to the leading
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behaviour at small k. If only the one that corresponds to the relaxation time approxima-
tion is kept, then the scattering rate is underestimated by factor four. The important ad-
ditional processes are (31b) in [27]. Both are related to the normal process already con-
sidered by a permutation of phonon labels and a rescaling. In one case the wave-vector k
phonon is scattered by one of wave-vector —ak? /64 resulting in two phonons of wave-vector
(1 £ /1T —a)k/24+ (=3 £ /1 —0a)ak?/384 4+ o(k?) where 0 < o < 1. In the other case
the phonon & is scattered by one with wave-vector (/1 4+« — 1)k/2 — (v/1 4+ a +3)ak’ /384
+o(k*), a > 0, leading to another with (/1 +a + Dk/2 — (/1 +a — 3)ak’ /384 + o(k?)
together with a very small —ak?®/64 wave-vector phonon. The contribution of both these
processes to the decay rate of phonon k is proportional to the deviation of the number of the
—ak? /64 wave-vector phonons from their thermal equilibrium average value rather than the
deviation of the phonon k number from equilibrium which is the proportionality factor in the
process contributing to the relaxation time approximation. This distinction is crucial because
the —ak® /64 phonon number deviation is much larger than the k phonon number deviation
and it is this that makes these contributions important. The difference in number deviation
is related to the difference in mean free path; in the thermal gradient problem the phonon
occupation number is characteristic not of the temperature at the location of scattering but
of a temperature at a source roughly one mean free path distant.

The situation describing fluctuations from equilibrium appears to be different. There is
no corresponding mechanism to drive the large deviations of the smallest O (k%) wave-vector
phonons so one can expect the relaxation time approximation to be a better descriptor here.
Indeed, Lukkarinen and Spohn [25] have recently presented a proof that in the limit w — 0
the relaxation time approximation yields the same leading divergence for the energy current
power spectrum as does the exact solution to the Boltzmann-Peierls equation. On the other
hand, this result is somewhat surprising in view of the detailed comparison with simulation
we describe below where we infer that the relaxation time approximation underestimates the
true scattering rate by about a factor two. If the theoretical asymptotic agreement between
the relaxation time approximation and the exact Boltzmann-Peierls solution is confirmed by
an exact calculation for the finite frequency range covered by the simulations then we must
conclude that the Boltzmann-Peierls equation fails to accurately describe 1D transport in
the weak scattering regime. The alternative is that the weak scattering and w — 0 limits are
more subtle than we are assuming below and that the numerical agreement on which our
conclusions are based are somehow accidental.

The independent exponential relaxation in time of each normal mode as given in (59)
implies the energy current power spectrum is a mode sum of the corresponding frequency
domain Lorentzians o (1/1;)/(w? + (1/7)?). The explicit formula is

Co =2 [ S (63)

+ (/7))

which also expresses the fact that energy in mode k is transported at the group velocity u; =
(1/2)wzp cos(k/2). The temperature dependent prefactor in (63) can be deduced from the

sum-rule requirement that [ (dw/ 271)6'5 (w) is the equal time energy current-current average
(8j2) which in the harmonic limit is (kzT)%wz5%/8. Given the explicit formulae (61a) for

the relaxation time we can write CA'6 (w) in the scaling form
A 207" Zp
Ce(w) = (kpT) WC (w/€2), (64)
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where CF (w) is the dimensionless spectrum

x dk k k K
CRw)= | —cos*| = )sin®(=) ——" . 65
(w) 5, cos <2> sin <2> o+ sin (5) K2 (65)

The integral in (65) must be done numerically but then, as given by (64), can be applied

universally with only an amplitude and frequency rescaling. The spectrum CR(w) is even in
w, has the normalization

/ dwCF(w) = % (66)

and is characterized by simple power-law behaviour in the two limits of low and high fre-
quency. These are, for positive w,

C:‘R(w) ~ w0 ?0.2749172... (w0 — 0) (672)
~ w 21.1488360 (w — 00). (67b)

The w~?/ low frequency behaviour arises because of the small k singularity in the relaxation
time integral K; given in (62a). This in turn, as discussed in [27], is a consequence of the
fact that the phonon dispersion curve wy at small k is linear with a cubic correction. Thus the
w2/ divergence observed here is quite general and not at all special to the nearest neighbour
model (54). On the other hand, it may require the absence of odd terms in the potential. The
evidence for this is the frequency independent regime seen in the cubic-plus-quartic model
spectrum in Fig. 4.

For purposes of comparing the above theoretical results to numerical simulation we first
note that we can rescale lengths and times such that the Boltzmann factor exp(—H/kpT) is
reduced to a one parameter family. The specific scaling we have chosen turns H(p, X) in
(54) into

H(p, X) v, 1y,

2P D) o x)= = 4+ A=x? + —x* 68

kg T (W,x) =7 +ATx"+ 7« (682)
K,

A= Wk (o5

and is equivalent to setting m = K4 = kT =1, K, = A. Comparison with (32) shows that,
except for the cubic term, the FPU-8 model here is the (x-shifted) FPU-«f model of the
text with A = (a*)2. The case A = 0 is the pure quartic model discussed in [20] whereas
weak anharmonicity requires A — oo. The largest A in the simulations described below is
A =20.

A number of thermodynamic properties of the model can be given explicitly in terms of
known functions and are useful as numerical checks. First note that because the potential
terms in (68a) are even in x, the specific heat ratio y = 1. We can then get the adiabatic
sound speed, c, trivially from the isothermal compressibility and find

c? 2472 (69a)
L2t a
C02 RK —1 ’
_ K34(A?/8) (69b)
K1/4(A?/8)°
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where K34 and K4 are Bessel functions and ¢o? = A is the result one would have in the
absence of the x* term in (68a). Similarly, for the equal time energy current-current average
we get

_ 1
"Rjo=—5==3BRx — 1], (70)

where (8j2)o = A/2 is the result with no x* term in (68a) and equals f(dw/27r)ée () in the
relaxation time approximation. Thus any deviation of the ratio / R ;o in (70) from unity indi-
cates a failure of the power spectrum sum-rule. This failure vanishes as A — oo but is about
3% at A =10 and rises to 11% at A =5 and 27% at A = 3. To some extent the failure is
spurious and just a consequence of our having chosen to determine the amplitude in (63) by
evaluating averages in the harmonic limit. A perfectly reasonable expedient which we adopt

is to redefine C (w) = 2ACR(w/Q)/Q as given in (64) to C (w) ='R 02ACR(a)/ Q)/Q
and this ensures the sum-rule is exactly satisfied. We also recogmze that the relaxation time
approximation for the mode decay rate, namely 1/7, = $2sin’(k/2)K; from (61a), is un-
likely to be exactly correct. The very simplest correction one can make here is a single
multiplicative constant for all 1/7; and hence we make the replacement 2 — R 2. In con-
clusion, we compare

2ACR (] (R, Q)

Ce(@)='Rjo R.Q

(71)
to the simulation results with R, as adjustable and designated as the relaxation rate correc-
tion factor.

Comparlson with s1mulat10n is shown in Fig. 6 in the form of a logarithmic deviation,
namely log,[C. (w)S™!2ion /€ ()EmTD] ys. log,(w/27). Values for A range from 3 to 20
and it is only for the smallest A that any significant systematic deviation in the low frequency
phonon region can be detected. Each fit in Fig. 6 has yielded a relaxation rate correction fac-
tor and these are shown in Fig. 7 as R; vs. 1/A. Any variation with A indicates that there
are processes contributing to the scattering beyond that given by the Fermi golden rule result

@ Springer



28 G.R. Lee-Dadswell et al.

Fig. 7 Individual R; estimates

from Fig 6 vs. 1/A. The solid 2
box near the top of the graph is

the data from runs on chains of

length 215 all other data points 1.8
are for N =213, The data is well
summarized for A > 3 by the R;
smooth curve which is 1.6
Ry = (2.056 — 0.10/A% —

4.66/A%)/(1 4 20.47/A2%) and

provides an estimate of the weak 1.4
coupling limit A — oo from our

runs at finite A. We use units with
Ky=B)=1,=landm=1 1.0

(60) and the data in Fig. 7 is consistent with these perturbative corrections scaling asymp-
totically as 1/A2. This is expected since, as given in (68b), 1/A is proportional to /Ky in
the original Hamiltonian and thus the corrections vary linearly with perturbation, K4. Most
significantly, the simulation results show that there is a limiting value for R, as A — oo and,
thus, are consistent with the scaling expected from the Boltzmann-Peierls analysis. The fact
that this limiting value for R, is not unity but R; &~ 2.0-2.1 means our analysis is not yet
truly quantitative. Except for some guidance provided by the comments following equations
(62), we have no way of knowing whether the observed rate correction factor is the result of
the relaxation time approximation, failure of the Boltzmann “Stosszahlansatz” in the context
of 1D phonons, or some combination of the two. Resolution will have to wait until further
theoretical work is completed.

The above discussion suggests that we could calculate the corresponding chain viscos-
ity from the Boltzmann-Peierls equation. We indicate briefly why this approach fails. The
physical picture underlying the calculation of viscous dissipation in (3D) insulating solids
is due to Akhieser [1]—see also [11, 18, 37]. Imagine one of the low frequency phonons in
a lattice system of phonons. What is meant by low frequency in this case is wt < 1, where
7 is the average relaxation time (due to phonon collisions) of all phonons in the system. The
given phonon can be thought of as slowly modulating the spatial density. Therefore, because
of anharmonicity in the interparticle interactions, the elastic constants and frequencies of all
phonons are also modulated by the phonon in question. The mode Gruneisen parameter y;,
where for 1D [5]

Vk:_ﬂ dwy __ o(Inwy) ’ (72)

w (L) d(In (L))

describes the frequency shift of mode k due to the lattice strain induced by the given phonon.
In general (3D) the y; vary from mode to mode, so that the differing frequency shifts put
the system temporarily out of thermal equilibrium (recall that the thermal mode occupancies
ny are adiabatic invariants and thus temporarily constant—i.e. until relaxation occurs—for
small w, and that the new n; will depend on the shifted frequencies). If w is small enough
(i.e. wt K 1) the system can relax back to equilibrium during the period of modulation,
27 /w, of the lattice and the distortion process is quasi-static (i.e. reversible or dissipation-
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less). For larger w, say wt < 1, the relaxation will not precisely follow the distortion, leading
to irreversible behaviour with viscous dissipation.

For frequencies wt < 1 Akhieser and others [1, 11, 18, 37] have applied the Boltzmann-
Peierls equation, with and without the single relaxation time approximation, to calculate 3D
lattice viscosities (i.e. shear and bulk). If we apply this theory to 1D chains we find that the
bulk viscosity is a sum of contributions from all modes, and that the contribution of mode
k contains the factor (8y;)2, where 8y = yx — (y), with (- -) denoting an average over all
k. As we shall see, for our purposes the exact nature of the averaging over k£ need not be
specified. The appearance of the quantity 8y, is unsurprising in view of the physical picture
given above. We now evaluate §y; for a 1D chain with Hamiltonian of type (54) and (23),
with K;, K3, and K4 denoting the harmonic, cubic and quartic spring constants, respectively.
The value of y; for such a chain is [6]

= (4) (% 73
-)E) .

Note that y; is independent of k, so that 6y, = 0. Thus the Boltzmann-Peierls approach fails
to predict a viscosity for all such chains (with nearest-neighbour interactions), for arbitrary
values of K3 and Kj4.

Appendix C: Momentum Current in the Collisionless Regime

We verify statements made on pages 16 and 19 of the text that, at least for a specific model,
the high frequency weak coupling regime is a distinct collisionless regime in which phonon
scattering plays no role. Explicitly, we show that the momentum current correlation function
for the FPU-B model of Appendix B, evaluated as an average over a thermal population
of undamped phonons, agrees with numerical simulation. Moreover, the comparison with
the numerical simulation shows in what frequency regime other processes dominate the
momentum current power spectrum.
The momentum current for the FPU-8 model of Appendix B is given by

. K K
aJ{:_d_%in—\/—%in3 (74)

and it is a straightforward, albeit tedious, textbook exercise to express the coordinate devi-
ations X; in terms of phonon creation and annihilation operators and evaluate the average
(& j; (t)Sj; (0)) in an ensemble of non-interacting, Bose distributed phonons. The terms pro-
portional to K ,% and K, K, are time independent because the coordinate sums in (74) dictate
that there are no remaining k 7 O phonons in the final expressions. The term proportional
to K42 is a three phonon average in which the total momentum k; + k, + k3 = 0. The fi-
nal expression for the temporal Fourier transform of the correlation function, in the high
temperature or classical limit, is

- 3
Cowy= ( 2k T ) K42/dk1 /dkzzS(iwl tartws—w). (75

T I’VZCL)ZB2

The integrals in (75) are understood to be over an interval of 27 and the remaining sum is
meant to indicate eight separate terms corresponding to all possible sign combinations in
the §-function. All of these terms can be combined into one by the expedient of a factor
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two, dropping the absolute value signs in the definition (55) of the phonon frequency, and
extending the integration interval for each momentum to 47. The result is our collisionless
power spectrum

A (w/wzB) (76)

z 3 kgTK:
b = 21
B

with A given by (68b) and / (z) the dimensionless spectrum

I(z) = 1/4/dk1 /dk28 [Sin (%) + sin (%) —sin <% + %) - Z:| mn

in which integration intervals of 47 are understood making 7 (z) a full period integral over
a periodic function.

The evaluation of 7(z) will be given below but a number of important features can be
understood without detailed calculation. A key observation is that (77) is completely anal-
ogous to a density of states expression commonly found in solid state physics and as such
has singular points which are the well known van Hove singularities. The three sine function
sum in the §-function has several symmetry related local maxima which are also the absolute
maxima. One of these is at k; = k, = 47/3 and this implies the spectrum approaches a con-
stant as z approaches 3+/3/2 from below and vanishes identically for z > 3+/3/2. Since
1(z) is an even function of z, there is a corresponding cutoff at z = -3J3 /2. The integrand
region near the origin, k; = k, = 0, is also the source for a van Hove singularity and this
is rather more unusual and interesting. Because the linear terms in the sine sum vanish, the
leading behaviour is the cubic proportional to k;k; (k; + k) and simple power counting then
shows the spectrum must diverge as |z|~'/3. We can expect this to be a general result, de-
pendent only on the fact that phonon dispersion curves vary linearly with cubic corrections
at small k, and not specific to the nearest neighbour force constant model being treated here.

The evaluation of (77) is quite involved with a lot of similarities to what was done in [27]
to obtain the relaxation time integral K that has been reproduced here as (62a). The first
step is the change of variables k; =2(u + v), k, = 2(u — v) which transforms the sine sum
into 2 sin(u) cos(v) — sin(2u) and makes the v integration trivial. The remaining u integral
is

4/‘ du
V4sin® () — (sin(2u) + 2)2

with the u integration over that interval between 0 and & for which the argument of the
square root is non-negative. The substitution x = cot(u) puts the integrand in (78) into alge-
braic form and shows the result can be expressed as an elliptic integral. The most convenient
result however is obtained by expanding the elliptic integral as a series and recognizing the
series as the expansion of

I1(z) =

(78)

1/3
1(z) = (i> B(1/3,1/3)F(1/3,1/3;2/3; 4z2/27)
z

1/3
_ g(%) B(2/3,2/3)F(2/3,2/3;4/3; 472 /27) 79

valid for z > 0 and which, surprisingly, except for normalization and a change of argument
47227 < 25in2(k /2)/27, is the K integral (62a). The final proof that (79) is the correct
value of (78) is completed by showing both forms satisfy the same differential equation. All
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Fig. 8 Comparison of simulations of the momentum current power spectrum with the collisionless spectrum
(76) and (79) rescaled as described in the text. The horizontal line is the estimated amplitude for the zero
frequency limit of the spectrum for the pure quartic model taken from [20] and is based on simulations on
chains longer than those treated here. Arrows on curves for A > 0 mark the expected frequency for the longest
possible wavelength mode in the system. Even harmonics of this fundamental are apparent in the large A,
weakly anharmonic, simulations; the fundamental itself is not visible except at small A. As in Fig. 6, the
simulations are run with Ky =B8=m=1,K, = A

of the above manipulations are complicated and could not have been done without computer
packages such as Maple.

The power spectrum (76) with the explicit result (79) has been compared with the numer-
ical simulations described in Appendix B. The agreement is excellent for the largest A values
and can be improved for smaller A by two renormalizations similar to what was done for
the energy current power spectrum in Appendix B. First, the harmonic model zone bound-
ary frequency wzp = 2+/K,/m is rescaled by the sound velocity ratio ¢/cq using (69). This
guarantees that w = w (k) in the limit k — 0O is given exactly even when, as A is decreased,
the modes at large k strongly damp and their frequency becomes ambiguous. Second, the
spectrum amplitude is rescaled to give the exact frequency sum-rule. The integral over the

collisionless C (@) given in (76) is

x 127TkBTK2

whereas the exact result, as obtained from the equal time thermodynamic average 27 (§ ff),
is

/da)é;(a)) — ks TK, [3RK - 81)

R’
where R is the Bessel function ratio (69b). The exact expression reduces, in the two limit-
ing cases of large and small A to

12nkpT K,

x 18 4
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_ Tk K> [mer . O(A)] , (82)
Rr
where
_TG/4)
"Tramey 83)

Thus we confirm (80) in the limit A — oo and yet obtain a finite result for A — 0.

Comparisons of the rescaled predictions with simulation are shown in Fig. 8. Remark-
ably, even the A = 0, pure quartic, model is in qualitative agreement at high frequencies
with the collisionless approximation. At lower frequencies we see another contribution to
the simulation spectrum which presumably is related to the finite lifetime of the phonons.
Exactly what this relation might be is, however, not obvious since, as shown in Appen-
dix B, the Boltzmann-Peierls approach will not yield a non-zero viscosity. Also, the corner
frequencies at which the spectrum saturates in the momentum current power spectrum are
much lower than those in the energy current spectrum as seen by comparison of Fig. 8 and 6.
Another striking observation from Fig. 8 is that the low frequency saturation value of the
momentum current spectrum is independent of the magnitude of the anharmonic term in the
Hamiltonian. Such universality begs for an explanation; we do not have one.
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